These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of hip flexibility on optimal stalder performances on high bar. Author: Begon M, Hiley MJ, Yeadon MR. Journal: Comput Methods Biomech Biomed Engin; 2009 Oct; 12(5):575-83. PubMed ID: 19266351. Abstract: In the optimisation of sports movements using computer simulation models, the joint actuators must be constrained in order to obtain realistic results. In models of a gymnast, the main constraint used in previous studies was maximum voluntary active joint torque. In the stalder, gymnasts reach their maximal hip flexion under the bar. The purpose of this study was to introduce a model of passive torque to assess the effect of the gymnast's flexibility on the technique of the straddled stalder. A three-dimensional kinematics driven simulation model was developed. The kinematics of the shoulder flexion, hip flexion and hip abduction were optimised to minimise torques for four hip flexion flexibilities: 100 degrees, 110 degrees, 120 degrees and 130 degrees. With decreased flexibility, the piked posture period is shorter and occurs later. Moreover the peaks of shoulder and hip torques increase. Gymnasts with low hip flexibility need to be stronger to achieve a stalder; hip flexibility should be considered by coaches before teaching this skill.[Abstract] [Full Text] [Related] [New Search]