These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The tubulin-bound conformation of paclitaxel: T-taxol vs "PTX-NY".
    Author: Yang Y, Alcaraz AA, Snyder JP.
    Journal: J Nat Prod; 2009 Mar 27; 72(3):422-9. PubMed ID: 19267457.
    Abstract:
    Nearly 35 years after its discovery and 11 years after FDA approval of paclitaxel (PTX) as a breakthrough anticancer drug, the 3-D structure of the agent bound to its beta-tubulin target was proposed to be T-Taxol. The latter bioactive form has recently been challenged by the Ojima group with a structure, "PTX-NY" ("REDOR Taxol"), in which the C-13 side chain is proposed to adopt a different conformation and an alternative hydrogen-bonding pattern in the tubulin binding site. Previously, the two conformers were compared to show that only T-Taxol fits the PTX-derived electron crystallographic density. That work has been extended by molecular mechanics and quantum chemical methods to reveal that the PTX-NY conformation is relatively less stable, on average, by 10-11 kcal/mol. In agreement with NMR studies, an 11 ns molecular dynamics treatment for PTX in an explicit water pool locates T-Taxol along the trajectory, but not PTX-NY. Docking of various PTX conformers into the electron crystallographic binding site of tubulin demonstrates that PTX-NY cannot be accommodated unless the pocket is reorganized in violation of the experimental constraints. Finally, analysis of the structures of T-Taxol and PTX-NY for their capacity to predict the existence of superpotent PTX analogues discloses that only the former forecasts such analogues, as now established by the T-Taxol-inspired synthesis of bridged taxanes. In sum, all empirical criteria support T-Taxol as the bound conformation of PTX on beta-tubulin in microtubules.
    [Abstract] [Full Text] [Related] [New Search]