These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of osmolality on sperm morphology, motility and flagellar wave parameters in Northern pike (Esox lucius L.).
    Author: Alavi SM, Rodina M, Viveiros AT, Cosson J, Gela D, Boryshpolets S, Linhart O.
    Journal: Theriogenology; 2009 Jul 01; 72(1):32-43. PubMed ID: 19269024.
    Abstract:
    Northern pike (Esox lucius L.) spermatozoa are uniflagellated cells differentiated into a head without acrosome, a midpiece and a flagellar tail region flanked by a fin structure. Total, flagellar, head and midpiece lengths of spermatozoa were measured and show mean values of 34.5, 32.0, 1.32, 1.17 microm, respectively, with anterior and posterior widths of the midpiece measuring 0.8 and 0.6 microm, respectively. The osmolality of seminal plasma ranged from 228 to 350 mOsmol kg(-1) (average: 283.88+/-33.05). After triggering of sperm motility in very low osmolality medium (distilled water), blebs appeared along the flagellum. At later periods in the motility phase, the tip of the flagellum became curled into a loop shape which resulted in a shortening of the flagellum and a restriction of wave development to the proximal part (close to head). Spermatozoa velocity and percentage of motile spermatozoa decreased rapidly as a function of time postactivation and depended on the osmolality of activation media (P<0.05). In general, the greatest percentage of motile spermatozoa and highest spermatozoa velocity were observed between 125 and 235 mOsmol kg(-1). Osmolality above 375 mOsmol kg(-1) inhibited the motility of spermatozoa. After triggering of sperm motility in activation media, beating waves propagated along the full length of flagella, while waves appeared dampened during later periods in the motility phase, and were absent at the end of the motility phase. By increasing osmolality, the velocity of spermatozoa reached the highest value while wave length, amplitude, number of waves and curvatures also were at their highest values. This study showed that sperm morphology can be used for fish classification. Sperm morphology, in particular, the flagellar part showed several changes during activation in distilled water. Sperm motility of pike is inhibited due to high osmolality in the seminal plasma. Osmolality of activation medium affects the percentage of motile sperm and spermatozoa velocity due to changes in flagellar wave parameters.
    [Abstract] [Full Text] [Related] [New Search]