These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of bla(IMP-22) in Pseudomonas spp. in urban wastewater and nosocomial environments: biochemical characterization of a new IMP metallo-enzyme variant and its genetic location. Author: Pellegrini C, Mercuri PS, Celenza G, Galleni M, Segatore B, Sacchetti E, Volpe R, Amicosante G, Perilli M. Journal: J Antimicrob Chemother; 2009 May; 63(5):901-8. PubMed ID: 19270313. Abstract: OBJECTIVES: The aim of the study was the biochemical characterization of a new variant of the metallo-beta-lactamase, IMP-22. Moreover, the genetic environment of the bla(IMP-22) gene was investigated in Pseudomonas fluorescens and Pseudomonas aeruginosa collected from urban wastewater and a teaching hospital in L'Aquila, Italy. METHODS: Molecular characterization of genetic elements was carried out by PCR and DNA sequencing methods. The new enzyme was purified from recombinant Escherichia coli BL21(DE)Rosetta/pBC-SK/IMP-22. Steady-state kinetic parameters (K(m) and V(max)) were determined for a large pattern of substrates. RESULTS: A new IMP metallo-beta-lactamase gene was found in a class 1 integron and in one case, in a plasmid of Pseudomonas spp. The bla(IMP-22) encodes for a pre-protein of 246 amino acids and the N-terminus of the mature beta-lactamase (NH(2)-PDLK) was also determined. The molecular mass and pI were 24 930 Da and 6.2, respectively. On the basis of the kinetic parameters calculated (K(m) and V(max)), IMP-22 was found to hydrolyse narrow- and extended-spectrum beta-lactams. Enzyme activity was found to be inhibited by metal chelators such as EDTA, 1,10-o-phenathroline and dipicolinic acid with an IC(50) of 800, 750 and 300 microM, respectively. CONCLUSIONS: The finding of the bla(IMP-22) gene in P. fluorescens environmental strains and P. aeruginosa clinical isolate suggests the ongoing spread of bla(MBL) genes in several bacterial species and in different environments.[Abstract] [Full Text] [Related] [New Search]