These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Liquid-vapor equilibrium isotopic fractionation of water: how well can classical water models predict it?
    Author: Chialvo AA, Horita J.
    Journal: J Chem Phys; 2009 Mar 07; 130(9):094509. PubMed ID: 19275411.
    Abstract:
    The liquid-vapor equilibrium isotopic fractionation of water is determined by molecular-based simulation, via Gibbs ensemble Monte Carlo and isothermal-isochoric molecular dynamics involving two radically different but realistic models, the extended simple point charge, and the Gaussian charge polarizable models. The predicted temperature dependence of the liquid-vapor equilibrium isotopic fractionation factors for H(2) (18)O/H(2) (16)O, H(2) (17)O/H(2) (16)O, and (2)H(1)H(16)O/(1)H(2) (16)O are compared against the most accurate experimental datasets to assess the ability of these intermolecular potential models to describe quantum effects according to the Kirkwood-Wigner free energy perturbation variant Planck's over h(2)-expansion. Predictions of the vapor pressure isotopic effect for the H(2) (18)O/H(2) (16)O and H(2) (17)O/H(2) (16)O pairs are also presented in comparison with experimental data and two recently proposed thermodynamic modeling approaches. Finally, the simulation results are used to discuss some approximations behind the microscopic interpretation of isotopic fractionation based on the underlying rototranslational coupling.
    [Abstract] [Full Text] [Related] [New Search]