These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Thrombotic microangiopathies: towards a pathophysiology-based classification. Author: Coppo P, Veyradier A. Journal: Cardiovasc Hematol Disord Drug Targets; 2009 Mar; 9(1):36-50. PubMed ID: 19275576. Abstract: Thrombotic microangiopathies (TMA) encompass various diseases characterized by a microangiopathic hemolytic anemia, platelet clumping, and organ failure of variable severity. Thrombotic thrombocytopenic purpura (TTP) is a particularly severe form of TMA characterized by systemic organ failure which results from a severe defect in ADAMTS13, a plasma enzyme specifically involved in the cleavage of highly hemostatic unusually large (UL) von Willebrand factor (VWF) multimers into smaller and less adhesive VWF forms. Failure to degrade these UL-VWF multimers leads to excessive platelet aggregates and capillary occlusion. ADAMTS13 deficiency results from bi-allelic mutations in hereditary TTP, whereas in acquired forms it results from autoantibodies that alter the protein function. Patients with acquired idiopathic TTP have a trend to develop autoimmunity, since a clinical context of autoimmunity may be found in 30 p. cent of cases. Moreover, the remarkable efficiency of monoclonal antibodies directed against CD20 antigen of B lymphocytes in refractory or chronic relapsing forms provides an additional indirect argument to consider acquired TTP as an autoimmune disease. Hemolytic uremic syndrome (HUS) is characterized prominently by a renal failure. In most cases, HUS is caused by entero-hemorrhagic Escherichia coli (diarrhea-positive HUS). Diarrhea-negative HUS, termed atypical HUS, was associated with a dysfunction in complement pathway involving mutations in factor H, factor I, CD46/MCP, factor B and C3 components. The major improvement in our understanding of TMA pathophysiology allows now a more accurate molecular classification of TMA syndromes, which opens fascinating perspectives of targeted therapies in the forthcoming years.[Abstract] [Full Text] [Related] [New Search]