These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Scale-up analysis for a CHO cell culture process in large-scale bioreactors.
    Author: Xing Z, Kenty BM, Li ZJ, Lee SS.
    Journal: Biotechnol Bioeng; 2009 Jul 01; 103(4):733-46. PubMed ID: 19280669.
    Abstract:
    Bioprocess scale-up is a fundamental component of process development in the biotechnology industry. When scaling up a mammalian cell culture process, it is important to consider factors such as mixing time, oxygen transfer, and carbon dioxide removal. In this study, cell-free mixing studies were performed in production scale 5,000-L bioreactors to evaluate scale-up issues. Using the current bioreactor configuration, the 5,000-L bioreactor had a lower oxygen transfer coefficient, longer mixing time, and lower carbon dioxide removal rate than that was observed in bench scale 5- and 20-L bioreactors. The oxygen transfer threshold analysis indicates that the current 5,000-L configuration can only support a maximum viable cell density of 7 x 10(6) cells mL(-1). Moreover, experiments using a dual probe technique demonstrated that pH and dissolved oxygen gradients may exist in 5,000-L bioreactors using the current configuration. Empirical equations were developed to predict mixing time, oxygen transfer coefficient, and carbon dioxide removal rate under different mixing-related engineering parameters in the 5,000-L bioreactors. These equations indicate that increasing bottom air sparging rate is more efficient than increasing power input in improving oxygen transfer and carbon dioxide removal. Furthermore, as the liquid volume increases in a production bioreactor operated in fed-batch mode, bulk mixing becomes a challenge. The mixing studies suggest that the engineering parameters related to bulk mixing and carbon dioxide removal in the 5,000-L bioreactors may need optimizing to mitigate the risk of different performance upon process scale-up.
    [Abstract] [Full Text] [Related] [New Search]