These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pml and TAp73 interacting at nuclear body mediate imatinib-induced p53-independent apoptosis of chronic myeloid leukemia cells.
    Author: Liu JH, Liu CC, Yen CC, Gau JP, Wang WS, Tzeng CH.
    Journal: Int J Cancer; 2009 Jul 01; 125(1):71-7. PubMed ID: 19291793.
    Abstract:
    Bcr-abl signals for leukemogenesis of chronic myeloid leukemia (CML) and activates ras. Since the function of promyelocytic leukemia protein (pml) is provoked by ras to promote apoptosis and senescence in untransformed cells, the function is probably masked in CML. Imatinib specifically inhibits bcr-abl and induces apoptosis of CML cells. As reported previously, p53(wild) CML was more resistant to imatinib than that lacking p53. Here, we searched for an imatinib-induced p53 independent proapoptotic mechanism. We found imatinib up-regulated phosphorylation of p38 mitogen-activated protein kinase (MAPK), checkpoint kinase 2 (chk2) and transactivation-competent (TA) p73; expression of pml and bax; formation of PML-nuclear body (NB); and co-localization of TAp73/PML-NB in p53-nonfunctioning K562 and p53(mutant) Meg-01 CML cells, but not in BCR-ABL(-) HL60 cells. In K562 cells, with short interfering RNAs (siRNAs), knockdown of pml led to dephosphorylation of TAp73. Knockdown of either pml or TAp73 abolished the imatinib-induced apoptosis. Inhibition of p38 MAPK with SB203580 led to dephosphorylation of TAp73, abolishment of TAp73/PML-NB co-localization, and the subsequent apoptosis. Conversely, interferon alpha-2a (IFNalpha), which increased phosphrylated TAp73 and TAp73/PML-NB co-localization, increased additively apoptosis with imatinib. The imatinib-induced TAp73/PML-NB co-localization was accompanied by co-immpunoprecipitation of TAp73 with pml. The imatinib-induced co-localization was also found in primary CML cells from 3 of 6 patients, including 2 with p53(mutant) and one with p53(wild). A novel p53-independent proapoptotic mechanism using p38 MAPK /pml/TAp73 axis with a step processing at PML-NB and probably with chk2 and bax being involved is hereby evident in some imatinib-treated CML cells.
    [Abstract] [Full Text] [Related] [New Search]