These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Spectroscopic and computational characterization of the base-off forms of cob(II)alamin. Author: Liptak MD, Fleischhacker AS, Matthews RG, Telser J, Brunold TC. Journal: J Phys Chem B; 2009 Apr 16; 113(15):5245-54. PubMed ID: 19298066. Abstract: The one-electron-reduced form of vitamin B(12), cob(II)alamin (Co(2+)Cbl), is found in several essential human enzymes, including the cobalamin-dependent methionine synthase (MetH). In this work, experimentally validated electronic structure descriptions for two "base-off" Co(2+)Cbl species have been generated using a combined spectroscopic and computational approach, so as to obtain definitive clues as to how these and related enzymes catalyze the thermodynamically challenging reduction of Co(2+)Cbl to cob(I)alamin (Co(1+)Cbl). Specifically, electron paramagnetic resonance (EPR), electronic absorption (Abs), and magnetic circular dichroism (MCD) spectroscopic techniques have been employed as complementary tools to characterize the two distinct forms of base-off Co(2+)Cbl that can be trapped in the H759G variant of MetH, one containing a five-coordinate and the other containing a four-coordinate, square-planar Co(2+) center. Accurate spin Hamiltonian parameters for these low-spin Co(2+) centers have been determined by collecting EPR data using both X- and Q-band microwave frequencies, and Abs and MCD spectroscopic techniques have been employed to probe the corrin-centered pi --> pi* and Co-based d --> d excitations, respectively. By using these spectroscopic data to evaluate electronic structure calculations, we found that density functional theory provides a reasonable electronic structure description for the five-coordinate form of base-off Co(2+)Cbl. However, it was necessary to resort to a multireference ab initio treatment to generate a more realistic description of the electronic structure of the four-coordinate form. Consistent with this finding, our computational data indicate that, in the five-coordinate Co(2+)Cbl species, the unpaired spin density is primarily localized in the Co 3d(z(2))-based molecular orbital, as expected, whereas in the four-coordinate form, extensive Co 3d orbital mixing, configuration interaction, and spin-orbit coupling cause the unpaired electron to delocalize over several Co 3d orbitals. These results provide important clues to the mechanism of enzymatic Co(2+)Cbl --> Co(1+)Cbl reduction.[Abstract] [Full Text] [Related] [New Search]