These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interrogating the molecular details of the peroxiredoxin activity of the Escherichia coli bacterioferritin comigratory protein using high-resolution mass spectrometry.
    Author: Clarke DJ, Mackay CL, Campopiano DJ, Langridge-Smith P, Brown AR.
    Journal: Biochemistry; 2009 May 12; 48(18):3904-14. PubMed ID: 19298085.
    Abstract:
    Bacterioferritin comigratory protein (BCP) is a bacterial thioredoxin-dependent thiol peroxidase that reduces a variety of peroxide substrates. Using high-resolution Fourier transform ion cyclotron resonance mass spectrometry coupled with top-down fragmentation techniques, we have analyzed the mechanistic details of hydrogen peroxide reduction by E. coli BCP. We show here that catalysis occurs via an atypical two-cysteine peroxiredoxin pathway. A transient sulfenic acid is initially formed on Cys-45, before resolution by the formation of an intramolecular disulfide bond between Cys-45 and Cys-50. This oxidized BCP intermediate is shown to be a substrate for reduction by thioredoxin, completing the catalytic cycle. Although we invoke Cys-50 in the catalytic cycle of Escherichia coli bacterioferritin comigratory protein (BCP), a previous study had shown that this residue was not absolutely required for peroxiredoxin activity. In order to explain these apparently conflicting phenomena, we analyzed the reaction of a C50S BCP mutant with peroxide. We show that this mutant BCP enzyme adopts a different and novel mechanistic pathway. The C50S BCP mutant reacts with peroxide to form a sulfenic acid on Cys-45, in the same manner as wild-type BCP. However, the nascent intermediate is then resolved by reaction with Cys-45 from a second BCP molecule, resulting in a dimeric intermediate containing an intermolecular disulfide bond. We further show that this novel resolving complex is a substrate for reduction by thioredoxin. The importance of our results in furthering the understanding of catalysis within BCP family is discussed.
    [Abstract] [Full Text] [Related] [New Search]