These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 15-Deoxy-Delta12,14-prostaglandin J2 inhibits HIV-1 transactivating protein, Tat, through covalent modification.
    Author: Kalantari P, Narayan V, Henderson AJ, Prabhu KS.
    Journal: FASEB J; 2009 Aug; 23(8):2366-73. PubMed ID: 19299483.
    Abstract:
    Controlling the HIV/AIDS epidemic remains a major challenge, with approximately 5 million new HIV infections annually. Cyclopentenone prostaglandins (CyPG), such as 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)), are arachidonic acid-derived endogenous electrophiles that possess anti-HIV activity by an unknown mechanism. Given that the reactive alpha,beta-unsaturated ketone in the cyclopentenone ring of 15d-PGJ(2) covalently modifies key Cys thiols in select proteins, we hypothesized that 15d-PGJ(2) inhibits HIV transcription and replication by targeting Cys thiols in HIV-1 Tat. Tat is a potent transactivator of viral gene expression required for HIV transcriptional elongation and replication. Our studies indicate that 15d-PGJ(2) treatment of cells inhibits Tat-dependent transcription and replication of HIV-1, while 9,10-dihydro-15d-PGJ(2), PGE(2), PGF(2alpha), or PGD(2) that lack the reactive alpha,beta-unsaturated ketone were ineffective. The inhibition of Tat activity by 15d-PGJ(2) was dose-dependent, with an IC(50) of 1.2 microM and independent of NF-kappaB pathway. Furthermore, using a biotinylated derivative of 15d-PGJ(2), we demonstrate that 15d-PGJ(2) modifies free Cys-thiols in Tat to form covalent Michael adducts and that the interaction was further increased on reduction of Tat. 15d-PGJ(2)-modified Tat was unable to transactivate the HIV long terminal repeat in U937 human macrophages. These data demonstrate that Tat acts as a molecular target of CyPG leading to the inhibition of transcription and also suggest a novel therapeutic approach to complement current antiretroviral strategies for HIV/AIDS.
    [Abstract] [Full Text] [Related] [New Search]