These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The receptor for advanced glycation end products impairs host defense in pneumococcal pneumonia.
    Author: van Zoelen MA, Schouten M, de Vos AF, Florquin S, Meijers JC, Nawroth PP, Bierhaus A, van der Poll T.
    Journal: J Immunol; 2009 Apr 01; 182(7):4349-56. PubMed ID: 19299735.
    Abstract:
    Streptococcus pneumoniae is the most common cause of community-acquired pneumonia. The receptor for advanced glycation end products (RAGE) is a multiligand receptor that is expressed ubiquitously in the lungs. Engagement of RAGE leads to activation of multiple intracellular signaling pathways, including NF-kappaB and subsequent transcription of several proinflammatory mediators. To determine the role of RAGE in the innate immune response to S. pneumoniae pneumonia, RAGE-deficient (RAGE(-/-)) and wild-type mice were intranasally inoculated with S. pneumoniae. S. pneumoniae pneumonia resulted in an up-regulation of constitutively present RAGE expression in lung tissue, especially in the interalveolar septae. RAGE(-/-) mice showed an improved survival, which was accompanied by a lower bacterial load in the lungs at 16 h and a decreased dissemination of the bacteria to blood and spleen at 16 and 48 h after inoculation. RAGE(-/-) macrophages showed an improved killing capacity of S. pneumoniae in vitro. Lung inflammation was attenuated in RAGE(-/-) mice at 48 h after inoculation, as indicated by histopathology and cytokine/chemokine levels. Neutrophil migration to the lungs was mitigated in the RAGE(-/-) mice. In addition, in RAGE(-/-) mice, activation of coagulation was diminished. Additional studies examining the effect of RAGE deficiency on the early (6-h) inflammatory response to S. pneumoniae did not reveal an early accelerated or enhanced immune response. These data suggest that RAGE plays a detrimental role in the host response to S. pneumoniae pneumonia by facilitating the bacterial growth and dissemination and concurrently enhancing the pulmonary inflammatory and procoagulant response.
    [Abstract] [Full Text] [Related] [New Search]