These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cerebral oxygen saturation-time threshold for hypoxic-ischemic injury in piglets.
    Author: Kurth CD, McCann JC, Wu J, Miles L, Loepke AW.
    Journal: Anesth Analg; 2009 Apr; 108(4):1268-77. PubMed ID: 19299799.
    Abstract:
    BACKGROUND: Detection of cerebral hypoxia-ischemia (H-I) and prevention of brain injury remains problematic in critically ill neonates. Near-infrared spectroscopy (NIRS), a noninvasive bedside technology could fill this role, although NIRS cerebral O(2) saturation (Sc(O2)) viability-time thresholds for brain injury have not been determined. We investigated the relationship between H-I duration at Sc(O2) 35%, a viability threshold which causes neurophysiological impairment, to neurological outcome. METHODS: Forty-six fentanyl-midazolam anesthetized piglets were equipped with NIRS and cerebral function monitor (CFM) to record Sc(O2) and electrocortical activity (ECA). After carotid occlusion, inspired O(2) was adjusted to produce H-I (Sc(O2) 35% with decreased ECA) for 1, 2, 3, 4, 6 or 8 h in different groups, followed by survival to assess neurological outcome by behavioral and histological examination. RESULTS: For H-I lasting 1 or 2 h, ECA and Sc(O2) during reperfusion rapidly returned to normal and neurological outcomes were normal. For H-I more than 2-3 h, ECA was significantly decreased and Sc(O2) was significantly increased during reperfusion, suggesting continued depression of tissue O(2) metabolism. As H-I increased beyond 2 h, the incidence of neurological injury increased linearly, approximately 15% per h. CONCLUSION: A viability-time threshold for H-I injury is Sc(O2) of 35% for 2-3 h, heralded by abnormalities in NIRS and CFM during reperfusion. These findings suggest that NIRS and CFM might be used together to predict neurological outcome, and illustrate that there is a several hour window of opportunity during H-I to prevent neurological injury.
    [Abstract] [Full Text] [Related] [New Search]