These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Modality specific functional interaction in sensorimotor synchronization. Author: Pollok B, Krause V, Butz M, Schnitzler A. Journal: Hum Brain Mapp; 2009 Jun; 30(6):1783-90. PubMed ID: 19301250. Abstract: Movement execution strongly relies on precise sensorimotor synchronization. In a finger-tapping task that requires subjects to synchronize their finger taps to regular pacing signal synchronization accuracy varies with respect to pacing signal's modality. This study aimed at elucidating functional brain dynamics associated with modality specific behavioral synchronization accuracy. To this end, 10 right-handed subjects performed a finger-tapping task with respect to regular auditory and visual pacing, respectively, whereas neuromagnetic activity was recorded using a 122-channel whole-head neuromagnetometer. Visual pacing was associated with significantly reduced tap-to-pacer asynchrony and increased intertap variability as compared to auditory pacing. The brain dynamics associated with task execution were analyzed using the frequency domain beamformer approach dynamic imaging of coherent sources (DICS). Both tasks were shown to be associated with comparable networks. However, during visual pacing involvement of the ventral premotor cortex (PMv) was shown, whereas during auditory pacing the dorsal premotor cortex (PMd) was concerned with task execution. Synchronization with respect to visual pacing was associated with significantly increased functional interaction between thalamus and PMv at beta frequency as compared to functional interplay between thalamus and PMd during auditory pacing. Auditory synchronization was associated with increased functional interaction between left superior temporal gyrus and PMd at alpha frequency. Furthermore, functional interaction between thalamus and premotor cortex at beta frequency was significantly correlated with synchronization accuracy. All in all the present data suggest that modality specific synchronization differences are associated with frequency and connectivity specific changes of functional interaction in distinct brain networks.[Abstract] [Full Text] [Related] [New Search]