These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Familial FTDP-17 missense mutations inhibit microtubule assembly-promoting activity of tau by increasing phosphorylation at Ser202 in vitro. Author: Han D, Qureshi HY, Lu Y, Paudel HK. Journal: J Biol Chem; 2009 May 15; 284(20):13422-13433. PubMed ID: 19304664. Abstract: In Alzheimer disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and other tauopathies, tau accumulates and forms paired helical filaments (PHFs) in the brain. Tau isolated from PHFs is phosphorylated at a number of sites, migrates as approximately 60-, 64-, and 68-kDa bands on SDS-gel, and does not promote microtubule assembly. Upon dephosphorylation, the PHF-tau migrates as approximately 50-60-kDa bands on SDS-gels in a manner similar to tau that is isolated from normal brain and promotes microtubule assembly. The site(s) that inhibits microtubule assembly-promoting activity when phosphorylated in the diseased brain is not known. In this study, when tau was phosphorylated by Cdk5 in vitro, its mobility shifted from approximately 60-kDa bands to approximately 64- and 68-kDa bands in a time-dependent manner. This mobility shift correlated with phosphorylation at Ser(202), and Ser(202) phosphorylation inhibited tau microtubule-assembly promoting activity. When several tau point mutants were analyzed, G272V, P301L, V337M, and R406W mutations associated with FTDP-17, but not nonspecific mutations S214A and S262A, promoted Ser(202) phosphorylation and mobility shift to a approximately 68-kDa band. Furthermore, Ser(202) phosphorylation inhibited the microtubule assembly-promoting activity of FTDP-17 mutants more than of WT. Our data indicate that FTDP-17 missense mutations, by promoting phosphorylation at Ser(202), inhibit the microtubule assembly-promoting activity of tau in vitro, suggesting that Ser(202) phosphorylation plays a major role in the development of NFT pathology in AD and related tauopathies.[Abstract] [Full Text] [Related] [New Search]