These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Multifunctionality dominantly determines the rate of human housekeeping and tissue specific interacting protein evolution. Author: Podder S, Mukhopadhyay P, Ghosh TC. Journal: Gene; 2009 Jun 15; 439(1-2):11-6. PubMed ID: 19306918. Abstract: Elucidation of the determinants of the rate of protein sequence evolution is one of the great challenges in evolutionary biology. It has been proposed that housekeeping genes are evolutionarily slower than tissue specific genes. In the present communication, we have examined different determinants that influence the evolutionary rate variation in human housekeeping and tissue specific proteins present in protein-protein interaction network. Studies on yeast proteome, revealed a predominant role of protein connectivity in determining the rate of protein evolution. However, in human, we did not observe any significant influence of protein connectivity on its evolutionary rate. Rather, a significant impact of the proportion of protein's interacting length (amount of protein interface involved in interaction with its partners), expression level and multifunctionality has been observed in determining the rate of protein evolution. We also observed that multi interface proteins are evolutionarily conserved between housekeeping and tissue specific genes and it has been found that the average number of biological processes they associated in these two sets of genes is similar. Moreover, single interface proteins in housekeeping genes evolve more slowly as compared to tissue specific genes owing to their involvement in different number of biological processes. Partial correlation analysis suggests that the relative importance of three individual factors in determining the evolutionary rate variation between housekeeping and tissue specific proteins is in the order of protein multifunctionality>protein expression level>interacting protein length.[Abstract] [Full Text] [Related] [New Search]