These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Does the asymmetry multiplier in the 1991 NIOSH lifting equation adequately control the biomechanical loading of the spine?
    Author: Lavender SA, Li YC, Natarajan RN, Andersson GB.
    Journal: Ergonomics; 2009 Jan; 52(1):71-9. PubMed ID: 19308820.
    Abstract:
    The aim of this research was to evaluate whether the asymmetry multiplier incorporated in the 1991 National Institute for Occupational Safety and Health lifting equation adequately controls the biomechanical spine loads during asymmetric lifting. Sixteen male subjects lifted a box from four initial locations varying in terms of the angular deviation from the mid-sagittal plane (0, 30, 60 and 90 degrees). From each location, boxes that weighed the recommended weight limit (RWL) and three times the RWL were lifted at two qualitatively defined lifting speeds. Ground reaction forces were combined with kinematic data in a linked-segment model to quantify the 3-D moments at the base of the spine (L5/S1) and the spine compression forces. The results show that the twisting and lateral bending moments increased with task asymmetry despite the lessening of the RWL (p<0.01). The flexion moment and the spine compression decreased with asymmetry, although at a slower rate than the RWL. When the dynamics were removed from the linked segment spine model to approximate the assumption of slow and smooth lifting, the estimated compression remained approximately 3400 N across all asymmetry conditions. Thus, the reduction in the RWL due to asymmetry multiplier appears appropriate and should not be changed, as been suggested by recent psychophysical studies.
    [Abstract] [Full Text] [Related] [New Search]