These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vascularization--the conduit to viable engineered tissues. Author: Kaully T, Kaufman-Francis K, Lesman A, Levenberg S. Journal: Tissue Eng Part B Rev; 2009 Jun; 15(2):159-69. PubMed ID: 19309238. Abstract: Long-term viability of thick three-dimensional engineered tissue constructs is a major challenge. Addressing it requires development of vessel-like network that will allow the survival of the construct in vitro and its integration in vivo owing to improved vascularization after implantation. Resulting from work of various research groups, several approaches were developed aiming engineered tissue vascularization: (1) embodiment of angiogenesis growth factors in the polymeric scaffolds for prolonged release, (2) coculture of endothelial cells with target tissue cells and angiogenesis signaling cells, (3) use of microfabrication methods for creating designed channels for allowing nutrients to flow and/or for directing endothelial cells attachment, and (4) decellularization of organs and blood vessels for creating extracellular matrix. A synergistic effect is expected by combining several of these approaches as already demonstrated in some of the latest studies. Current paper reviews the progress in each approach and recent achievements toward vascularization of engineered tissues.[Abstract] [Full Text] [Related] [New Search]