These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neuroprotective effects of neuropeptide Y-Y2 and Y5 receptor agonists in vitro and in vivo.
    Author: Smiałowska M, Domin H, Zieba B, Koźniewska E, Michalik R, Piotrowski P, Kajta M.
    Journal: Neuropeptides; 2009 Jun; 43(3):235-49. PubMed ID: 19318226.
    Abstract:
    It is generally assumed that neurodegeneration is connected with glutamatergic hyperactivity, and that neuropeptide Y (NPY) inhibits glutamate release. Some earlier studies indicated that NPY may have neuroprotective effect; however, the results obtained so far are still divergent, and the role of different Y receptors remains unclear. Therefore in the presented study we investigated the neuroprotective potential of NPY and its Y2, Y5 or Y1 receptor (R) ligands against the kainate (KA)-induced excitotoxicity in neuronal cultures in vitro, as well as in vivo after intrahippocampal KA injection and also in an ischemic middle cerebral artery occlusion model after intraventricular injection of Y2R agonist. NPY compounds were applicated 30 min, 1, 3 or 6 h after the start of the exposure to KA, or 30 min after the onset of ischemia. Our results indicate the neuroprotective activity of NPY and its Y2R and Y5R ligands against the kainate-induced excitotoxicity in primary cortical and hippocampal cultures. Importantly, NPY was effective when given as late as 6 h, while Y2R or Y5R agonists 3 h, after starting the exposure to KA. In in vitro studies those protective effects were inhibited by the respective receptor antagonists. Neuroprotection was also observed in vivo after intrahippocampal injection of Y2R and Y5R agonists 30 min or 1 h after KA. No protection was found either in vitro or in vivo after the Y1R agonist. The Y2R agonist also showed neuroprotective activity in the ischemic model. The obtained results indicate that neuropeptide Y produces neuroprotective effect via Y2 and Y5 receptors, and that the compounds may be effective after delayed application.
    [Abstract] [Full Text] [Related] [New Search]