These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Manufacturing of multi-layered nanofibrous structures composed of polyurethane and poly(ethylene oxide) as potential blood vessel scaffolds.
    Author: Shin JW, Lee YJ, Heo SJ, Park SA, Kim SH, Kim YJ, Kim DH, Shin JW.
    Journal: J Biomater Sci Polym Ed; 2009; 20(5-6):757-71. PubMed ID: 19323888.
    Abstract:
    One of the current limitations in using electrospun nanofibrous materials for tissue engineering is that cells have difficulty penetrating into the materials. For this, multi-layered electrospun structures composed of polyurethane (PU) and poly(ethylene oxide) (PEO) were fabricated and tested in vitro. A 20% (w/v) PU solution was electrospun for 30 min, while a 20% (w/v) PEO solution was electrospun for 5, 15 or 30 min, alternatively. Then, the PEO was extracted by immersing the structure in distilled water to make multi-layered structure. The characteristics of fabricated structures were examined by SEM, FT-IR spectroscopy, mechanical tests and cell penetration test. The bioactivities of smooth muscle cells (SMCs) on these scaffolds were assessed by quantifying DNA, collagen and glycosaminoglycan (GAG) levels. Although hybrid PEO-extracted scaffolds had a little of residual PEO, they were more penetrable than PU alone scaffolds. Also, they showed higher bioactivity than PU-alone scaffolds. The results of this study provided potential of this structure in the application not only to the development of artificial blood vessels but also to other types for tissue engineering.
    [Abstract] [Full Text] [Related] [New Search]