These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular-programmed self-assembly of homo- and heterometallic tetranuclear coordination compounds: synthesis, crystal structures, and magnetic properties of rack-type Cu(II)(2)M(II)(2) complexes (M = Cu and Ni) with tetranucleating phenylenedioxamato bridging ligands. Author: Pardo E, Cangussu D, Lescouëzec R, Journaux Y, Pasán J, Delgado FS, Ruiz-Pérez C, Ruiz-García R, Cano J, Julve M, Lloret F. Journal: Inorg Chem; 2009 Jun 01; 48(11):4661-73. PubMed ID: 19331374. Abstract: New homo- and heterobimetallic tetranuclear complexes of formula [Cu(4)(mpba)(Me(4)en)(4)(H(2)O)(4)](ClO(4))(4).3H(2)O (1), [Cu(4)(mpba)(Me(4)en)(4)(H(2)O)(4)](PF(6))(4).2H(2)O (2), [Cu(4)(ppba)(Me(4)en)(4)(H(2)O)(4)](ClO(4))(4).2H(2)O (3), [Cu(4)(mpba)(dipn)(4)](ClO(4))(4).3H(2)O (4), [Cu(4)(ppba)(dipn)(4)](ClO(4))(4).2H(2)O (5), and [Cu(2)Ni(2)(ppba)(dipn)(4)(H(2)O)(2)](PF(6))(4) (6) [mpba = N,N'-1,3-phenylenebis(oxamate), ppba = N,N'-1,4-phenylenebis(oxamate), Me(4)en = N,N,N',N'-tetramethylethylenediamine, and dipn = dipropylenetriamine] have been synthesized and structurally and magnetically characterized. Complexes 1-6 have been prepared following a molecular-programmed self-assembly method, where a heteropolytopic tetranucleating phenylenedioxamato bridging ligand (L = mpba or ppba) is bound to four metal ions of identical or different natures (M = Cu(II) and/or Ni(II)) with partially blocked coordination sites by bi- or tridentate polyamine terminal ligands (L' = Me(4)en or dipn). The structures of 1-6 consist of cationic tetranuclear Cu(II)(2)M(II)(2) entities with an overall (4)R rack-type architecture, which is made up of two oxamato-bridged homo- (1-5) or heterodinuclear (6) Cu(II)M(II) units (M = Cu and Ni) connected through either a meta- (1, 2, and 4) or a para-substituted (3, 5, and 6) phenylene spacer between the Cu(II) ions. The magnetic properties of 1-6 have been interpreted according to their "dimer-of-dimers" structure [H = -J(S(1).S(2) + S(3).S(4)) - J'(S(1).S(3)) with S(1) = S(3) = S(Cu) = 1/2 and S(2) = S(4) = S(M) = 1/2 (M = Cu) or 1 (M = Ni)]. The homometallic Cu(II)(4) complexes exhibit either strong (-J = 330-350 cm(-1)) or weak-to-moderate (-J = 4.8-87.1 cm(-1)) antiferromagnetic intradimer couplings through the oxamato bridge, depending on the bi- (1-3) or tridentate (4 and 5) nature of the terminal ligand, respectively. The heterometallic Cu(II)(2)Ni(II)(2) complex with a tridentate terminal ligand (6) shows instead a moderate antiferromagnetic intradimer coupling (-J = 50 cm(-1)). Otherwise, the nature and magnitude of the interdimer coupling cannot be unambiguously determined except for the pair of homo- and heterometallic Cu(II)(2)M(II)(2) complexes [M = Cu (5) and Ni (6)] with the p-phenylenedioxamato bridging ligand and a tridentate terminal ligand, which show a weak antiferromagnetic interdimer coupling (-J' = 14 and 23 cm(-1)) across the para-substituted phenylene spacer.[Abstract] [Full Text] [Related] [New Search]