These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vasoactive intestinal peptide in rats with focal cerebral ischemia enhances angiogenesis. Author: Yang J, Zong CH, Zhao ZH, Hu XD, Shi QD, Xiao XL, Liu Y. Journal: Neuroscience; 2009 Jun 30; 161(2):413-21. PubMed ID: 19332106. Abstract: We studied the effect of vasoactive intestinal peptide (VIP) on angiogenesis in the ischemic boundary area after focal cerebral ischemia. Adult male Sprague-Dawley rats underwent middle cerebral artery occlusion for 2 h. A single dose of VIP was given via i.c.v. injection at the beginning of reperfusion. Immunohistochemistry and Western blotting were performed to assay angiogenesis and brain levels of vascular endothelial growth factor (VEGF) protein, respectively. In addition, the expression of VEGF and its receptors (flt-1 and flk-1), as well as endothelial proliferation, was measured using rat brain microvascular endothelial cells. Immunohistochemical analyses revealed significant (P<0.05) increases in the numbers of bromodeoxyuridine (BrdU) positive endothelial cells and microvessels at the boundary of the ischemic lesion in rats treated with VIP compared with rats treated with saline. Western blotting analysis showed that treatment with VIP significantly (P<0.05) raised VEGF levels in the ischemic hemisphere. In addition, treatment with VIP increased flt-1 and flk-1 immunoreactivity in endothelial cells. In vitro, incubation with VIP significantly (P<0.01) increased the proliferation of endothelial cells and induced the expression of VEGF, flt-1 and flk-1 in endothelial cells. The stimulatory effect of VIP on the proliferation of endothelial cells was significantly (P<0.01) inhibited by SU5416, a selective inhibitor of VEGF receptor tyrosine kinase. Our data suggest that treatment with VIP enhances angiogenesis in the ischemic brain, and this effect may be mediated by increases in levels of VEGF and its receptors.[Abstract] [Full Text] [Related] [New Search]