These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Multiple contact network is a key determinant to protein folding rates.
    Author: Gromiha MM.
    Journal: J Chem Inf Model; 2009 Apr; 49(4):1130-5. PubMed ID: 19338373.
    Abstract:
    Understanding the relationship between amino acid sequences and folding rates of proteins is an important task in computational and molecular biology. It has been shown that topological parameters, contact order, long-range order, and total contact distance relate well with protein folding rates. In this work, we have systematically analyzed the influence of amino acid residues that form multiple contacts in protein structures to folding rates of proteins. We observed an inverse relationship between the number of residues with multiple contacts and protein folding rates. Further analysis indicates that multiple contacts are influenced by hydrophobic residues, whereas the role is minimal between the residues that are capable of forming hydrogen bonds. The propensity of multiple contacts forming residues showed that aromatic and hydrophobic residues are dominant in two-state proteins, whereas the polar residues Ser and Thr are also preferred ones in three-state proteins. In addition, multiple contact forming residues are interconnected with each other through contact networks in protein structures. The comparison between slow and fast folding proteins demonstrated the presence of more multiple contact forming residues in slow folding proteins with a limit of 4-6 contacts/residue. These results have been reflected in amino acid sequences in the form of short-, medium-, and long-range contacts, which could discriminate slow and fast folding proteins with an accuracy of 96% using a 5-fold cross-validation method.
    [Abstract] [Full Text] [Related] [New Search]