These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cloning, expression, and biochemical properties of CPOX4, a genetic variant of coproporphyrinogen oxidase that affects susceptibility to mercury toxicity in humans. Author: Li T, Woods JS. Journal: Toxicol Sci; 2009 Jun; 109(2):228-36. PubMed ID: 19339664. Abstract: Coproporphyrinogen oxidase (CPOX) catalyzes the two-step decarboxylation of coproporphyrinogen-III to protoporphyrinogen-IX in the heme biosynthetic pathway. Previously we described a specific polymorphism (A814C) in exon 4 of the human CPOX gene (CPOX4) and demonstrated that CPOX4 is associated with both modified urinary porphyrin excretion and increased neurobehavioral deficits among human subjects with low-level mercury (Hg) exposure. Here, we sought to characterize the gene products of CPOX and CPOX4 with respect to biochemical and kinetic properties. Coproporphyrinogen-III was incubated with recombinantly expressed and purified human CPOX and CPOX4 enzymes at various substrate concentrations, with or without Hg(2+) present. Both CPOX and CPOX4 formed protoporphyrinogen-IX from coproporphyrinogen-III; however, the affinity of CPOX4 was twofold lower than that of CPOX (CPOX K(m) = 0.30 microM, V(max) = 0.52 pmol protoporphyrin-IX; CPOX4 K(m) = 0.54 microM, V(max) = 0.33 pmol protoporphyrin-IX). Hg(2+) specifically inhibited the second step of coproporphyrinogen-III decarboxylation (harderoporphyrinogen to protoporphyrinogen-IX) in a dose dependent manner. We also compared the catalytic activities of CPOX and CPOX4 in human liver samples. The specific activities of CPOX in mutant livers were significantly lower (40-50%) than those of either wild-type or heterozygous. Additionally, enzymes from mutant, heterozygous and wild-type livers were comparably inhibited by Hg(2+) (10 microM), decreasing CPOX4 activity to 25% that of the wild-type enzyme. These findings suggest that CPOX4 may predispose to impaired heme biosynthesis, which is limited further by Hg exposure. These effects may underlie increased susceptibility to neurological deficits previously observed in Hg-exposed humans with CPOX4.[Abstract] [Full Text] [Related] [New Search]