These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oxidative stress and the development of diabetic retinopathy: contributory role of matrix metalloproteinase-2.
    Author: Kowluru RA, Kanwar M.
    Journal: Free Radic Biol Med; 2009 Jun 15; 46(12):1677-85. PubMed ID: 19345729.
    Abstract:
    Matrix metalloproteinases (MMPs) degrade extracellular matrix and regulate many functions including cell signaling. Oxidative stress is implicated in the development of diabetic retinopathy, and MMP-2, the most ubiquitous member of the MMP family, is sensitive to oxidative stress. This study aimed to determine the regulation of MMP-2 by oxidative stress in the development of diabetic retinopathy and the role of MMP-2 in the apoptosis of retinal capillary cells. The effects of mitochondrial superoxide scavenger on glucose-induced alterations in MMP-2, and its proenzyme activator MT1-MMP and physiological inhibitor TIMP-2, were determined in retinal endothelial cells, and the regulation of their glucose-induced accelerated apoptosis by the inhibitors of MMP-2 was accessed. To confirm in vitro results, the effects of antioxidant supplementation on MMP-2, MT1-MMP, and TIMP-2 were investigated in the retina of streptozotocin-induced diabetic rats. Glucose-induced activation of retinal capillary cell MMP-2 and MT1-MMP and decrease in TIMP-2 were inhibited by superoxide scavengers, and their accelerated apoptosis was prevented by the inhibitors of MMP-2. Antioxidant therapies, which have been shown to inhibit oxidative stress, capillary cell apoptosis, and retinopathy in diabetic rats, ameliorated alterations in retinal MMP-2 and its regulators. Thus, MMP-2 has a proapoptotic role in the loss of retinal capillary cells in diabetes, and the activation of MMP-2 is under the control of superoxide. This suggests a possible use of MMP-2-targeted therapy to inhibit the development of diabetic retinopathy.
    [Abstract] [Full Text] [Related] [New Search]