These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Penultimate selenocysteine residue replaced by cysteine in thioredoxin reductase from selenium-deficient rat liver. Author: Lu J, Zhong L, Lönn ME, Burk RF, Hill KE, Holmgren A. Journal: FASEB J; 2009 Aug; 23(8):2394-402. PubMed ID: 19351701. Abstract: Selenium is an essential micronutrient for humans and animals, and its deficiency can predispose to the development of pathological conditions. This study evaluates the effect of selenium deficiency on the thioredoxin system, consisting of NADPH, selenoprotein thioredoxin reductase (TrxR), and thioredoxin (Trx); and the glutathione system, including NADPH, glutathione reductase, glutathione, and glutaredoxin coupled with selenoprotein glutathione peroxidase (GPx). We particularly investigate whether inactive truncated TrxR is present under selenium-starvation conditions due to reading of the UGA codon as stop. Feeding rats a selenium-deficient diet resulted in a large decrease in activity of TrxR and GPx in rat liver but not in the levels of Trx1 and Grx1. However, selenium deficiency induced mitochondrial Grx2 10-fold and markedly changed the expression of some flavoproteins that are involved in the cellular folate, glucose, and lipid metabolism. Liver TrxR mRNA was nearly unchanged, but no truncated enzyme was found. Instead, a low-activity form of TrxR with a cysteine substituted for the penultimate selenocysteine in the C-terminal active site was identified in selenium-deficient rat liver. These results show a novel mechanism for decoding the UGA stop codon, inserting cysteine to make a full-length enzyme that may be required for selenium assimilation.[Abstract] [Full Text] [Related] [New Search]