These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effect of redox-active cyanomanganese(I) ligands on intramolecular electron transfer to, and alkyne alignment in, M(CO)(RC[triple bond, length as m-dash]CR)Tp' (M = Mo or W) units. Author: Adams CJ, Connelly NG, Onganusorn S. Journal: Dalton Trans; 2009 Apr 28; (16):3062-73. PubMed ID: 19352535. Abstract: The complexes [(eta-C(5)Me(5))(ON)LMn(micro-CN)M(CO)(RC[triple bond, length as m-dash]CR)Tp'](+) (L = CNXyl, M = Mo; L = CNBu(t), M = Mo or W, R = Ph or Me) and trans- or cis-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-CN)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+), and their linkage isomers [(eta-C(5)Me(5))(ON)LMn(micro-NC)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+) and trans- or cis-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+), undergo two one-electron oxidations. The complexes [(eta-C(5)Me(5))(ON)LMn(micro-XY)M(CO)(RC[triple bond, length as m-dash]CR)Tp'](+) (XY = CN or NC) are oxidised first at the N-bound metal centre and then at the C-bound centre. For [(dppm){(EtO)(3)P}(OC)(2)Mn(micro-XY)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+), the trans isomers are first oxidised at manganese whereas the cis isomers are first oxidised at M. Thus, the order of one-electron oxidation of the two series of binuclear monocations is influenced by linkage isomerisation of the cyanide bridge and cis-trans isomerisation of the Mn(CO)(2) group. IR spectroscopic changes on reaction of Ag(+) with [(eta-C(5)Me(5))(ON)(Bu(t)NC)Mn(micro-CN)W(CO)(MeC[triple bond, length as m-dash]CMe)Tp'](+) are consistent with one-electron at the N-bound tungsten centre. Likewise, trans-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+) (M = Mo or W) give the stable dications [(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](2+). Significantly longer Mn-P bond distances in trans-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)Mo(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](2+) than in trans-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)Mo(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+) are consistent with one-electron oxidation first at Mn(I); the alignment of the (CN)Mn(CO)(2){P(OEt)(3)}(dppm) fragment relative to the alkyne in trans-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)Mo(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+) suggests it acts as a pi-acceptor, in contrast to related species such as trans-(NC)Mn(CO)(2){P(OEt)(3)}(dppm) and (NC)Mn(NO){P(OPh)(3)}(pi-C(5)H(4)Me) which behave as simple N-donors.[Abstract] [Full Text] [Related] [New Search]