These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of imatinib metabolites in rat and human liver microsomes: differentiation of hydroxylation from N-oxidation by liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Author: Ma S, Xu Y, Shou M. Journal: Rapid Commun Mass Spectrom; 2009 May; 23(10):1446-50. PubMed ID: 19353558. Abstract: In vitro metabolism of imatinib was investigated in rat and human liver microsomes. Atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) was applied in differentiating hydroxyl metabolites from N-oxides of imatinib because N-oxides are known to undergo deoxygenation during APCI. In addition, the major oxidative metabolite (M9, N-oxidation on the piperazine ring) was observed to undergo in-source fragmentation by elimination of formaldehyde. This fragment ion resulted from Meisenheimer rearrangement with migration of the N-methyl group to the corresponding N-methoxyl piperazine, followed by elimination of formaldehyde due to thermal energy activation at the vaporizer of APCI source. The presence of this fragment ion distinguished not only N-oxide from isomeric hydroxylated metabolite, but also unambiguously indicated that oxidation occurred on the N-4 of the piperazine ring where the methyl group was attached.[Abstract] [Full Text] [Related] [New Search]