These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Altered regulation of cyclic AMP-dependent protein kinase in a mouse lymphoma cell line. Author: Lasser M, Daniel V. Journal: Biochim Biophys Acta; 1977 May 12; 482(1):41-51. PubMed ID: 193571. Abstract: The ability of cyclic AMP to inhibit growth, cause cytolysis and induce synthesis of cyclic AMP-phosphodiesterase in S49.1 mouse lymphoma cells is deficient in cells selected on the basis of their resistance to killing by 2 mM dibutyryl cyclic AMP. The properties of the cyclic AMP-dependent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) in the cyclic AMP-sensitive (S) and cyclic AMP-resistant (R) lymphoma cells were comparatively studied. The cyclic AMP-dependent protein kinase activity or R cells cytosol exhibits an apparent Ka for activation by cyclic AMP 100-fold greater than that of the enzyme from the parental S cells. The free regulatory and catalytic subunits from both S and R kinase are thermolabile, when associated in the holoenzyme the two subunits are more stable to heat inactivation in R kinase than in S kinase. The increased heat stability of R kinase is observed however only for the enzyme in which the catalytic and cyclic AMP-binding activities are expressed at high cyclic AMP concentrations (10(-5)--10(-4) M), the activities expressed at low cyclic AMP concentrations (10(-9)--10(-6) M) being thermolabile. The regulatory subunit of S kinase can be stabilized against heat inactivation by cyclic AMP binding both at 2-10(-7) and 10(-5) M cyclic AMP concentrations. In contrast, the regulatory subunit-cyclic AMP complex from R kinase is stable to heat inactivation only when formed in the presence of high cyclic AMP concentrations (10(-5)M). The findings indicate that the transition from a cyclic AMP-sensitive to a cyclic AMP-resistant lymphoma cell phenotype is related to a structural alteration in the regulatory subunit of the cyclic AMP-dependent protein kinase which has affected the protein's affinity for cyclic AMP and its interaction with the catalytic subunit.[Abstract] [Full Text] [Related] [New Search]