These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Carboxyl methylation and farnesylation of transducin gamma-subunit synergistically enhance its coupling with metarhodopsin II.
    Author: Ohguro H, Fukada Y, Takao T, Shimonishi Y, Yoshizawa T, Akino T.
    Journal: EMBO J; 1991 Dec; 10(12):3669-74. PubMed ID: 1935895.
    Abstract:
    A heterotrimeric G-protein in vertebrate photoreceptor cells is called transducin (T alpha beta gamma), whose gamma-subunit is a mixture of two components, T gamma-1 and T gamma-2. T gamma-2 is S-farnesylated and partly carboxyl methylated at the C-terminal cysteine residue, whereas T gamma-1 lacks the modified cysteine residue. To elucidate the physiological significance of the double modifications in T gamma, we established a simple chromatographic procedure to isolate T gamma-1, methylated T gamma-2 and non-methylated T gamma-2 on a reversed phase column. Taking advantage of the high and reproducible yield of T gamma from the column, we analyzed the composition of T gamma subspecies in the T alpha-T beta gamma complex which did not bind with transducin-depleted rod outer segment membranes containing metarhodopsin II. The binding of T alpha-T beta gamma with the membranes was shown to require the S-farnesylated cysteine residue of T gamma, whose methylation further enhanced the binding. This synergistic effect was not evident when T alpha was either absent or converted to the GTP-bound form which is known to dissociate from T beta gamma. Thus we concluded that a formation of the ternary complex, T alpha-T beta gamma-metarhodopsin II, is enhanced by the farnesylation and methylation of T gamma. This suggests that the double modifications provide most efficient signal transduction in photoreceptor cells.
    [Abstract] [Full Text] [Related] [New Search]