These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The solution structures of Escherichia coli trp repressor and trp aporepressor at an intermediate resolution.
    Author: Arrowsmith C, Pachter R, Altman R, Jardetzky O.
    Journal: Eur J Biochem; 1991 Nov 15; 202(1):53-66. PubMed ID: 1935980.
    Abstract:
    We have determined the solution structures and examined the dynamics of the Escherichia coli trp repressor (a 25-kDa dimer), with and without the co-repressor L-tryptophan, from NMR data. This is the largest protein structure thus far determined by NMR. To obtain a set of data sufficient for a structure determination it was essential to resort to isotopic spectral editing. Line broadening observed in this molecular mass range precludes for the most part the measurement of coupling constants and stereospecific assignments, with the inevitable result that the attainable resolution of the final structure will be somewhat lower than the resolution reported for smaller proteins and peptides. Nevertheless the general topology of the protein can be deduced from the subsets of NOEs defining the secondary and tertiary structure, providing a basis for further refinement using the full set of NOEs and energy minimization. We report here (a) an intermediate resolution structure that can be deduced from NMR data, covalent, angular and van-der-Waals constraints only, without resort to detailed energy calculations, and (b) the limits of uncertainty within which this structure is valid. An examination of these structures combined with backbone amide exchange data shows that even at this resolution three important conclusions can be drawn: (a) the protein structure changes upon binding tryptophan; (b) the putative DNA binding region is much more flexible than the core of the molecule, with backbone amide proton exchange rates 1000 times faster than in the core; (c) the binding of tryptophan stabilizes the repressor molecule, which is reflected in both the appearance of additional NOEs, and in the slowing of backbone proton exchange rates by factors of 3-10. Sequence-specific 1H-NMR assignments and the secondary structure of the holopressor (L-tryptophan-bound form) have been reported previously [C. H. Arrowsmith, R. Pachter, R. B. Altman, S. B. Iyer & O. Jardetzky (1990) Biochemistry 29, 6332-6341]. Those for the trp aporepressor (L-tryptophan-free form), made using the same methods and conditions as described in the cited paper, are reported here. The secondary structure of the aporepressor was calculated from sequential and medium-range NOEs and is the same as reported for the holorepressor except that helix E is shorter. The tertiary solution structures for both forms of the repressor were calculated from long-range NOE data.(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]