These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of residual oxygen-15-labeled carbon monoxide radioactivity on cerebral blood flow and oxygen extraction fraction in a dual-tracer autoradiographic method. Author: Iwanishi K, Watabe H, Hayashi T, Miyake Y, Minato K, Iida H. Journal: Ann Nucl Med; 2009 Jun; 23(4):363-71. PubMed ID: 19360455. Abstract: OBJECTIVE: Cerebral blood flow (CBF), cerebral metabolic rate of oxygen (CMRO(2)), oxygen extraction fraction (OEF), and cerebral blood volume (CBV) are quantitatively measured with PET with (15)O gases. Kudomi et al. developed a dual tracer autoradiographic (DARG) protocol that enables the duration of a PET study to be shortened by sequentially administrating (15)O(2) and C(15)O(2) gases. In this protocol, before the sequential PET scan with (15)O(2) and C(15)O(2) gases ((15)O(2)-C(15)O(2) PET scan), a PET scan with C(15)O should be preceded to obtain CBV image. C(15)O has a high affinity for red blood cells and a very slow washout rate, and residual radioactivity from C(15)O might exist during a (15)O(2)-C(15)O(2) PET scan. As the current DARG method assumes no residual C(15)O radioactivity before scanning, we performed computer simulations to evaluate the influence of the residual C(15)O radioactivity on the accuracy of measured CBF and OEF values with DARG method and also proposed a subtraction technique to minimize the error due to the residual C(15)O radioactivity. METHODS: In the simulation, normal and ischemic conditions were considered. The (15)O(2) and C(15)O(2) PET count curves with the residual C(15)O PET counts were generated by the arterial input function with the residual C(15)O radioactivity. The amounts of residual C(15)O radioactivity were varied by changing the interval between the C(15)O PET scan and (15)O(2)-C(15)O(2) PET scan, and the absolute inhaled radioactivity of the C(15)O gas. Using the simulated input functions and the PET counts, the CBF and OEF were computed by the DARG method. Furthermore, we evaluated a subtraction method that subtracts the influence of the C(15)O gas in the input function and PET counts. RESULTS: Our simulations revealed that the CBF and OEF values were underestimated by the residual C(15)O radioactivity. The magnitude of this underestimation depended on the amount of C(15)O radioactivity and the physiological conditions. This underestimation was corrected by the subtraction method. CONCLUSIONS: This study showed the influence of C(15)O radioactivity in DARG protocol, and the magnitude of the influence was affected by several factors, such as the radioactivity of C(15)O, and the physiological condition.[Abstract] [Full Text] [Related] [New Search]