These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chemical manipulation by X-rays of functionalized thiolate self-assembled monolayers on Au.
    Author: Iqbal P, Critchley K, Attwood D, Tunnicliffe D, Evans SD, Preece JA.
    Journal: Langmuir; 2008 Dec 16; 24(24):13969-76. PubMed ID: 19360937.
    Abstract:
    The chemical modification caused by prolonged exposure to X-rays on a series of para-substituted phenyl moieties (-NO2, -CN, -CHO, -COOH, -CO2Me, and -CO2(1)Bu) at the surface of thiolate-Au self-assembled monolayers (SAMs) has been investigated by X-ray photoelectron spectroscopy (XPS). Furthermore, the influence that the phenyl group has on the chemical modification induced by the X-ray irradiation on the SAMs was investigated by comparing the XPS results obtained from irradiation on a NO2-aromatic-terminated SAM (6-(4-nitro-phenoxy)-hexane-1-thiolate (NPHT)) and NO2-aliphatic-terminated SAM (thioacetic acid S-(12-nitrododecyl) ester (TNDDE)). The NPHT and TNDDE SAMs have been shown to behave differently to X-ray exposure. The irradiation of the NPHT SAM led to the reduction of the nitro (-NO2) moiety to the amine (-NH2) moiety, as shown by the decrease in the intensity of the N 1s photoelectron peak for -NO2 (406 eV) in the XPS spectra with the concomitant increase in the N 1s photoelectron peak for -NH2 (399 eV). On the TNDDE SAM, XPS showed the -NO2 photoelectron peak again decreasing with prolonged X-ray irradiation whereas no peak was observed at 399 eV; therefore, the -NO2 moieties are selectively cleaved. No change was observed on the other functionalized monolayers apart from the -CO2(t)Bu-functionalized monolayer, where after 100 min of X-ray irradiation approximately 11% of the carbon content was lost. The S 2p and O 1s spectra remained unchanged during the irradiation suggesting the conversion of the -CO2(t)Bu to the -COOH moiety, although the conversion was not complete because the tertiary butyl moiety contributes 25% to the total carbon content of the SAM. Also, there was no evidence of the molecules desorbing from the substrate for any of the SAMs studied during the X-ray irradiation as shown by no change in the S 2p and C 1s XPS spectra taken during the X-ray irradiation.
    [Abstract] [Full Text] [Related] [New Search]