These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Type I polyketide synthases that require discrete acyltransferases. Author: Cheng YQ, Coughlin JM, Lim SK, Shen B. Journal: Methods Enzymol; 2009; 459():165-86. PubMed ID: 19362640. Abstract: The diverse structures of polyketide natural products are reflected by the equally diverse polyketide biosynthetic enzymes, namely polyketide synthases (PKSs). Three major classes of PKSs are known-noniterative type I PKSs, iterative type II PKSs and acyl carrier protein-independent type III PKSs, each of which consists of additional variants. One such variant is the noniterative type I PKS in which each PKS module lacks the cognate acyltransferase (AT) domain. The essential AT activity is instead provided by a discrete AT in trans. Termed "AT-less" type I PKSs, the loading of the malonate extender units by the discrete AT enzyme LnmG to each of the AT-less PKS modules of LnmI and LnmJ was confirmed experimentally for biosynthesis of the anticancer antibiotic leinamycin (LNM). The LNM PKS has since served as a model for the continuous discovery of numerous additional AT-less type I PKSs incorporating variable extender units. However, biochemical characterization of AT-less type I PKSs remains very limited, and the mechanism by which AT-less type I PKSs accommodate multiple extender units is unknown. This chapter provides the protocols used to establish and characterize the LNM PKS. Application of these methods to other AT-less type I PKSs should aid the biochemical characterization and hence possible exploitation of these unique PKSs for polyketide natural product structural diversity by combinatorial biosynthetic methods.[Abstract] [Full Text] [Related] [New Search]