These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Expression of the ggpPS gene for glucosylglycerol biosynthesis from Azotobacter vinelandii improves the salt tolerance of Arabidopsis thaliana. Author: Klähn S, Marquardt DM, Rollwitz I, Hagemann M. Journal: J Exp Bot; 2009; 60(6):1679-89. PubMed ID: 19363207. Abstract: Many organisms accumulate compatible solutes in response to salt or desiccation stress. Moderate halotolerant cyanobacteria and some heterotrophic bacteria synthesize the compatible solute glucosylglycerol (GG) as their main protective compound. In order to analyse the potential of GG to improve salt tolerance of higher plants, the model plant Arabidopsis thaliana was transformed with the ggpPS gene from the gamma-proteobacterium Azotobacter vinelandii coding for a combined GG-phosphate synthase/phosphatase. The heterologous expression of the ggpPS gene led to the accumulation of high amounts of GG. Three independent Arabidopsis lines showing different GG contents were characterized in growth experiments. Plants containing a low (1-2 micromol g(-1) FM) GG content in leaves showed no altered growth performance under control conditions but an increased salt tolerance, whereas plants accumulating a moderate (2-8 micromol g(-1) FM) or a high GG content (around 17 micromol g(-1) FM) showed growth retardation and no improvement of salt resistance. These results indicate that the synthesis of the compatible solute GG has a beneficial effect on plant stress tolerance as long as it is accumulated to an extent that does not negatively interfere with plant metabolism.[Abstract] [Full Text] [Related] [New Search]