These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Probing the kinetics and thermodynamics of copper(II) binding to Bacillus subtilis Sco, a protein involved in the assembly of the Cu(A) center of cytochrome c oxidase. Author: Cawthorn TR, Poulsen BE, Davidson DE, Andrews D, Hill BC. Journal: Biochemistry; 2009 Jun 02; 48(21):4448-54. PubMed ID: 19368359. Abstract: BsSco is a member of the Sco protein family involved in the assembly of the Cu(A) center within cytochrome c oxidase. BsSco forms a complex with Cu(II) that has properties consistent with dithiolate ligation. Stopped-flow UV-visible absorbance and fluorescence coupled with multiwavelength analysis reveal biphasic binding kinetics between BsSco and Cu(II). An initial species appears with absorbance centered at 382 nm at a copper concentration-dependent rate (2.9 x 10(4) M(-1) s(-1)). The initial species decays at a first-order rate (1.5 s(-1)) to the equilibrium form with a maximum at 352 nm. Formation of the BsSco-Cu(II) complex is accompanied by quenching of protein fluorescence. The copper concentration-dependent phase gives 70% of the total quenching, while the final 30% develops during the second phase of the absorbance change. The pH dependence of copper binding shows that the copper-dependent rate increases by 50-fold as the pH decreases from 8.5 to 5.5 with an apparent pK(a) of 6.7. The slower phase rate is independent of pH. Comparison of circular dichroism spectra between apo-BsSco and the BsSco-Cu(II) complex reveals a small change in the UV region consistent with a subtle conformational change upon copper binding. There is formation of a distinctive visible CD spectrum in the BsSco-Cu(II) complex. A model is presented in which the kinetic and thermodynamic stability of the BsSco-Cu(II) complex results from a two-step mechanism. Release of copper would be facilitated in the intermediate form of BsSco, and attaining such a low-Cu(II) affinity state may be important for BsSco's function in Cu(A) assembly.[Abstract] [Full Text] [Related] [New Search]