These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of thrombin on RPE cells are mediated by transactivation of growth factor receptors.
    Author: Hollborn M, Petto C, Steffen A, Trettner S, Bendig A, Wiedemann P, Bringmann A, Kohen L.
    Journal: Invest Ophthalmol Vis Sci; 2009 Sep; 50(9):4452-9. PubMed ID: 19369239.
    Abstract:
    PURPOSE: To determine the expression of blood coagulation factors and thrombin receptors in retinal pigment epithelial (RPE) cells and whether the effects of thrombin on the chemotaxis and the secretion of VEGF are mediated by transactivation of growth factor receptors. METHODS: Gene expression in acutely isolated and cultured human RPE cells was evaluated by RT-PCR. Alterations in gene expression and secretion of VEGF were determined by real-time RT-PCR and ELISA, respectively. Chemotaxis was examined with a Boyden chamber assay. RESULTS: RPE cells expressed the mRNA of the protease-activated receptors PAR1 and -3 and of various coagulation factors (III, V, VII, VIII, and X). Thrombin stimulated the expression and secretion of VEGF-A from RPE cells, decreased the expression of VEGFD, and increased the gene expression of VEGFR-1 (FLT1). The effects on the secretion of VEGF-A and the increase in FLT1 expression were mediated by stimulation of the secretion of TGF-beta1 and activation of the TGF-beta activin receptor-like kinase. Thrombin stimulated the chemotaxis of RPE cells, and this effect was mediated by transactivation of the PDGF receptor tyrosine kinase. CONCLUSIONS: The expression of different coagulation factors suggests that RPE cells provide a procoagulant surface for the formation of thrombin from prothrombin via the extrinsic coagulation pathway. Thrombin stimulates the secretion of VEGF-A, the expression of FLT1, and the chemotaxis of RPE cells via transactivation of TGF-beta and PDGF receptors, respectively.
    [Abstract] [Full Text] [Related] [New Search]