These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Direct toxic effects of aqueous extract of cigarette smoke on cardiac myocytes at clinically relevant concentrations. Author: Yamada S, Zhang XQ, Kadono T, Matsuoka N, Rollins D, Badger T, Rodesch CK, Barry WH. Journal: Toxicol Appl Pharmacol; 2009 Apr 01; 236(1):71-7. PubMed ID: 19371621. Abstract: AIMS: Our goal was to determine if clinically relevant concentrations of aqueous extract of cigarette smoke (CSE) have direct deleterious effects on ventricular myocytes during simulated ischemia, and to investigate the mechanisms involved. METHODS: CSE was prepared with a smoking chamber. Ischemia was simulated by metabolic inhibition (MI) with cyanide (CN) and 0 glucose. Adult rabbit and mouse ventricular myocyte [Ca(2+)](i) was measured by flow cytometry using fluo-3. Mitochondrial [Ca(2+)] was measured with confocal microscopy, and Rhod-2 fluorescence. The mitochondrial permeability transition (MPT) was detected by TMRM fluorescence and myocyte contracture. Myocyte oxidative stress was quantified by dichlorofluorescein (DCF) fluorescence with confocal microscopy. RESULTS: CSE 0.1% increased myocyte contracture caused by MI. The nicotine concentration (HPLC) in 0.1% CSE was 15 ng/ml, similar to that in humans after smoking cigarettes. CSE 0.1% increased mitochondrial Ca(2+) uptake, and increased the susceptibility of mitochondria to the MPT. CSE 0.1% increased DCF fluorescence in isolated myocytes, and increased [Ca(2+)](i) in paced myocytes exposed to 2.0 mM CN, 0 glucose (P-MI). These effects were inhibited by the superoxide scavenger Tiron. The effect of CSE on [Ca(2+)](i) during P-MI was also prevented by ranolazine. CONCLUSIONS: CSE in clinically relevant concentrations increases myocyte [Ca(2+)](i) during simulated ischemia, and increases myocyte susceptibility to the MPT. These effects appear to be mediated at least in part by oxidative radicals in CSE, and likely contribute to the effects of cigarette smoke to increase myocardial infarct size, and to decrease angina threshold.[Abstract] [Full Text] [Related] [New Search]