These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: AtMBD8 is involved in control of flowering time in the C24 ecotype of Arabidopsis thaliana. Author: Stangeland B, Rosenhave EM, Winge P, Berg A, Amundsen SS, Karabeg M, Mandal A, Bones AM, Grini PE, Aalen RB. Journal: Physiol Plant; 2009 May; 136(1):110-26. PubMed ID: 19374717. Abstract: The Arabidopsis thaliana accession C24 is a vernalization-responsive, moderately late flowering ecotype. We report that a mutation in AtMBD8, which encodes a protein with a putative Methyl-CpG-Binding Domain (MBD), in C24 background, results in a delay in flowering time during both long and short days. The atmbd8-1 mutant responded to vernalization as wild type (wt) plants. Consistent with a role in modulation of flowering time, an AtMBD8::GUS-reporter construct was expressed in the shoot meristem region and developing leaves. Full-genome transcriptional profiling revealed very few changes in gene expression between atmbd8-1 and wt plants. The expression level of FLC, the major repressor of transition to flowering, was unchanged in atmbd8-1, and in accordance with that, genes upstream of FLC were unaffected by the mutation. The expression level of CONSTANS, involved in photoperiodic control of flowering, was very similar in atmbd8-1 and wt plants. In contrast, the major promoters of flowering, FT and SOC1, were both downregulated. As FT is a regulator of SOC1, we conclude that AtMBD8 is a novel promoter of flowering that acts upstream of FT in the C24 accession. In contrast to atmbd8-1, the Colombia (Col) SALK T-DNA insertion line, atmbd8-2, did not display a delayed transition to flowering. Transcriptional profiling revealed that a substantial number of genes were differentially expressed between C24 and Col wt seedlings. Several of these genes are also differentially expressed in late flowering mutants. We suggest that these differences contribute to the contrasting effect of a mutation in AtMBD8 in the two ecotypes.[Abstract] [Full Text] [Related] [New Search]