These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Relationship between apolipoprotein C-III concentrations and high-density lipoprotein subclass distribution.
    Author: Tian L, Wu J, Fu M, Xu Y, Jia L.
    Journal: Metabolism; 2009 May; 58(5):668-74. PubMed ID: 19375590.
    Abstract:
    High-density lipoprotein (HDL) subclasses have different antiatherogenic potentials and functional properties. This work presents our findings and discussions on their metabolic implications on apolipoprotein (apo) C-III together with other apolipoprotein levels and HDL subclass distribution profile. Apolipoprotein A-I contents of plasma HDL subclasses were quantitated by 2-dimensional gel electrophoresis coupled with immunodetection in 511 subjects. Concentrations of triglycerides and of apo B-100, C-II, and C-III were higher, whereas those of HDL cholesterol were lower, for subjects in the highest tertile of apo C-III levels group, which presented a typical hypertriglyceridemic lipid profile. Subjects in the middle and highest tertile of apo C-III levels groups had increased prebeta(1)-HDL, HDL(3c), HDL(3b) (only in the highest tertile of apo C-III group), and HDL(3a), but decreased HDL(2a) and HDL(2b) contents compared with subjects in the lowest tertile of apo C-III levels group. With the elevation of apo C-III together with apo C-II levels, contents of small-sized prebeta(1)-HDL increased successively and significantly; but those of large-sized HDL(2b) reduced successively and significantly. With a rise in apo C-III and apo A-I levels, those of prebeta(1)-HDL increased significantly. Moreover, subjects with high apo A-I levels showed a substantial increase in HDL(2b); on the contrary, HDL(2b) declined progressively and obviously for subjects in the low apo A-I levels with the elevation of apo C-III levels. Correlation analysis illustrated that apo C-III levels were positively associated with prebeta(1)-HDL, prebeta(2)-HDL, and HDL(3a). The particle size of HDL shifted toward smaller sizes with the increase of plasma apo C-III levels, and the shift was more remarkable when the elevation of apo C-III and apo C-II was simultaneous; and besides, higher apo A-I concentrations could modify the effect of apo C-III on HDL subclass distribution profile. Large-sized HDL(2b) particles decreased greatly for hypertriglyceridemic subjects who were characterized by elevated apo C-III and C-II accompanied with significantly lower apo A-I, which, in turn, blocked the maturation of HDL.
    [Abstract] [Full Text] [Related] [New Search]