These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Serpina1 (alpha1-AT) is synthesized in the osteoblastic stem cell niche.
    Author: Kuiperij HB, van Pel M, de Rooij KE, Hoeben RC, Fibbe WE.
    Journal: Exp Hematol; 2009 May; 37(5):641-7. PubMed ID: 19375654.
    Abstract:
    OBJECTIVE: Previously, we identified Serpina1 as a potent inhibitor of hematopoietic stem and progenitor cell (HSC/HPC) mobilization. Serpina1 protein is found in the bone marrow (BM) extracellular fluid and concentrations are decreased during granulocyte colony-stimulating factor-induced HSC/HPC mobilization in mice. In addition, administration of exogenous Serpina1 protein inhibits HSC/HPC mobilization. BM cells responsible for production and secretion of Serpina1 remain unknown. Here, we examined the expression of Serpina1 in order to identify cell populations of the BM that synthesize Serpina1. MATERIALS AND METHODS: Osteoblast (OB) and hematopoietic BM cell fractions were isolated from femurs, tibias, and humeri obtained from untreated mice. Subsequently, each BM fraction was examined for the production of Serpina1 messenger RNA and protein by quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry. RESULTS: Quantitative real-time polymerase chain reaction analysis showed that Serpina1 messenger RNA is produced at high levels by OB compared to hematopoietic BM cells. Furthermore, Western blot analysis indicated that Serpina1 protein was secreted by OB. In contrast, no Serpina1 protein could be detected in the supernatant obtained from overnight cultured hematopoietic BM cells. Finally, in BM sections obtained from the femurs of untreated mice, Serpina1 protein was detected in OB cells lining the bone. CONCLUSION: Serpina1 protein in the BM extracellular fluid is predominantly produced by OB. This indicates that Serpina1 may play a regulatory role in the maintenance of HSC in the OB stem cell niche.
    [Abstract] [Full Text] [Related] [New Search]