These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Strain differences between Lewis and Fischer 344 rats in the modulation of dopaminergic receptors after morphine self-administration and during extinction.
    Author: Sánchez-Cardoso P, Higuera-Matas A, Martín S, Miguéns M, Del Olmo N, García-Lecumberri C, Ambrosio E.
    Journal: Neuropharmacology; 2009 Jul; 57(1):8-17. PubMed ID: 19376142.
    Abstract:
    The Lewis (LEW) and Fischer 344 (F344) rat strains have been used as a model to study genetic vulnerability to drug addiction and they differ in their dopaminergic systems. We have studied the variation in the D1-like and D2-like receptors in distinct brain regions of LEW and F344 rats that self-administered morphine (1 mg/kg) for 15 days and also after different extinction periods (3, 7 and 15 days). Under basal conditions, binding to D1-like receptors in the olfactory tubercle and substantia nigra, and to D2-like receptors in the Pyriform cortex and hippocampal-CA1 was lower in LEW rats than in F344 rats. Conversely, the LEW rats exhibited stronger D2-like binding in the caudate-putamen. In most brain regions there was a decrease in D1-like binding in LEW rats after self-administration while the F344 animals displayed an increment. Additionally, D2 receptors of LEW rats were down-regulated after self-administration in the caudate-putamen and in the nucleus accumbens (shell and core divisions). Binding to D1-like receptors increased in both strains in the early phases of extinction, while in the later stages a differential regulation was observed between both strains. During the early phases of extinction only F344 rats showed alterations in D2-like receptor binding, however in the latter phases a specific modulation occurred in both strains. These differences in basal D1-like and D2-like receptor binding, and their differential modulation after self-administration and during extinction, may be reflected in the greater vulnerability to opiate addiction shown by LEW strain.
    [Abstract] [Full Text] [Related] [New Search]