These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biosorptive removal of mercury(II) from aqueous solution using lichen (Xanthoparmelia conspersa) biomass: kinetic and equilibrium studies.
    Author: Tuzen M, Sari A, Mendil D, Soylak M.
    Journal: J Hazard Mater; 2009 Sep 30; 169(1-3):263-70. PubMed ID: 19380200.
    Abstract:
    The potential use of the lichen biomass (Xanthoparmelia conspersa) to remove mercury(II) ions from aqueous solution by biosorption was evaluated using the batch method. Effects of pH, contact time, biomass concentration and temperature on the removal of Hg(II) ions were studied. The Langmuir isotherm models defined the equilibrium data precisely compared to Freundlich model and the maximum biosorption capacity obtained was 82.8 mg g(-1). From the D-R isotherm model, the mean free energy was calculated as 9.5 kJ mol(-1). It shows that the biosorption of Hg(II) ions onto X. conspersa biomass was taken place by chemical ion-exchange. Experimental data were also performed to the pseudo-first-order and pseudo-second-order kinetic models. The results indicated that the biosorption of Hg(II) on the lichen biomass followed well the second-order kinetics. Thermodynamic parameters, DeltaG(o), DeltaH(o) and DeltaS(o) indicated the Hg(II) sorption to be exothermic and spontaneous with decreased randomness at the solid-solution interface. Furthermore, the lichen biomass could be regenerated using 1M HCl, with up to 85% recovery, which allowed the reuse of the biomass in ten biosorption-desorption cycles without any considerable loss of biosorptive removal capacity.
    [Abstract] [Full Text] [Related] [New Search]