These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Platinum complexes having redox-active PPh2C[triple bond]CFc and/or C[triple bond]CFc as terminal or bridging ligands. Author: Díez A, Lalinde E, Teresa Moreno M, Sánchez S. Journal: Dalton Trans; 2009 May 14; (18):3434-46. PubMed ID: 19381406. Abstract: A series of heteronuclear-Pt(ii) complexes containing ferrocenylethynyl units linked directly (Pt-C[triple bond]CFc) or through a phosphorous atom (Pt-PPh(2)C[triple bond]CFc) to the platinum center is reported. The reaction of derivative [cis-Pt(R(F))(2)(PPh(2)C[triple bond]CFc)(2)] (R(F) = C(6)F(5)) with the solvate complex [cis-Pt(R(F))(2)(thf)(2)] leads to the formation of an asymmetrical heteronuclear diplatinum complex [{Pt(R(F))(2)(mu-1kappaP:2eta(2)-PPh(2)C[triple bond]CFc)(2)}Pt(R(F))(2)] having the "cis-Pt(R(F))(2)" fragment coordinated to the triple bonds of both ferrocenylethynylphosphine units, while treatment of [cis-Pt(C[triple bond]CFc)(2)(PPh(2)C[triple bond]CR)(2)] (R = Fc , Ph , tBu ) with the same solvate [cis-Pt(R(F))(2)(thf)(2)], affords double ferrocenylacetylide-bridged diplatinum systems [{Pt(PPh(2)C[triple bond]CR)(2)(mu-eta(1):eta(2)-C[triple bond]CFc)(2)}Pt(R(F))(2)] . The solid-state structures of [cis/trans-Pt(R(F))(2)(PPh(2)C[triple bond]CFc)(2)] /, [cis-Pt(R(F))(2)(PPh(2)C[triple bond]CFc)(tht)] (tht = tetrahydrothiophene), [{Pt(R(F))(2)(mu-1kappaP:2eta(2)-PPh(2)C[triple bond]CFc)(2)}Pt(R(F))(2)] and [{Pt(PPh(2)C[triple bond]CtBu)(2)(mu-eta(1):eta(2)-C[triple bond]CFc)(2)}Pt(R(F))(2)] have been determined by X-ray diffraction methods. The electronic spectra and the electrochemical behaviour of all monoplatinum derivatives are discussed, showing a different extent of interaction between the remote ferrocenyl groups when they belong to PPh(2)C[triple bond]CFc or C[triple bond]CFc ligands. For the diplatinum systems and , containing bridging (kappaP:eta(2)-PPh(2)C[triple bond]CFc ) or (eta(1):eta(2)-C[triple bond, length as m-dash]CFc ) ligands, their electrochemical properties were also compared with the parent precursors.[Abstract] [Full Text] [Related] [New Search]