These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Theoretical investigation on multinuclear NMR chemical shifts of some tris(trifluoromethyl)boron complexes. Author: Zhang J, Cai S, Chen Z. Journal: Magn Reson Chem; 2009 Aug; 47(8):629-34. PubMed ID: 19384915. Abstract: Tris(trifluoromethyl)boron complexes have unusual properties and may find applications in many fields of chemistry, biology, and physics. To gain insight into their NMR properties, the isotropic 11B, 13C, and 19F NMR chemical shifts of a series of tris(trifluoromethyl)boron complexes were systematically studied using the gauge-included atomic orbitals (GIAO) method at the levels of B3LYP/6-31 + G(d,p)//B3LYP/6-31G* and B3LYP/6-311 + G(d,p)//B3LYP/6-311 + G(d,p). Solvent effects were taken into account by polarizable continuum models (PCM). The calculated results were compared with the experimental values. The reason that the structurally inequivalent fluorine atoms in a specific species give a same chemical shift in experimental measurements is attributed to the fast rotation of CF3 group around the B-C(F3) bond because of the low energy barrier. The calculated 11B, 13C(F3), and 19F chemical shifts are in good agreement with the experimental measurements, while the deviations of calculated 13C(X, X = O, N) chemical shifts are slightly large. For the latter, the average absolute deviations of the results from B3LYP/6-311 + G(d,p)//B3LYP/6-311 + G(d,p) are smaller than those from B3LYP/6-31 + G(d,p)//B3LYP/6-31G*, and the inclusion of PCM reduces the deviation values. The calculated 19F and 11B chemical shieldings of (CF3)3BCO are greatly dependent on the optimized structures, while the influence of structural parameters on the calculated 13C chemical shieldings is minor.[Abstract] [Full Text] [Related] [New Search]