These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Microarray analysis of liver gene expression in iron overloaded patients with sickle cell anemia and beta-thalassemia.
    Author: Flanagan JM, Steward S, Hankins JS, Howard TM, Neale G, Ware RE.
    Journal: Am J Hematol; 2009 Jun; 84(6):328-34. PubMed ID: 19384939.
    Abstract:
    Chronic transfusion therapy is used clinically to supply healthy erythrocytes for patients with sickle cell anemia (SCA) or beta-thalassemia major (TM). Despite the benefits of red blood cell transfusions, chronic transfusions lead to iron accumulation in key tissues such as the heart, liver, and endocrine glands. Transfusion-acquired iron overload is recognized as a cause of morbidity and mortality among patients receiving chronic transfusions. At present, there is little understanding of molecular events that occur during transfusional iron loading and the reasons for the large inter-individual variation observed clinically in transfusion-acquired iron accumulation. To address these issues, we examined whether any liver-expressed genes in SCA or TM patients with transfusional iron overload were associated with the degree of iron accumulation. Specifically, we performed microarray analysis on liver biopsy specimens comparing SCA patients with mild or severe iron overload and also compared SCA with TM patients. Fifteen candidate genes were identified with significantly differential expression between the high and low liver iron concentrations. SCA patients and 20 candidate genes were detected between the SCA and TM patient comparison. Subsequent quantitative PCR experiments validated 12 candidate genes; with GSTM1, eIF5a, SULF2, NTS, and HO-1 being particularly good prospects as genes that might affect the degree of iron accumulation. Future work will determine the baseline expression of these genes prior to transfusional iron overload and elucidate the full impact of these genes on the inter-individual variation observed clinically in transfusion-acquired iron accumulation.
    [Abstract] [Full Text] [Related] [New Search]