These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The spectrum of spontaneous mutations in a Saccharomyces cerevisiae uracil-DNA-glycosylase mutant limits the function of this enzyme to cytosine deamination repair.
    Author: Impellizzeri KJ, Anderson B, Burgers PM.
    Journal: J Bacteriol; 1991 Nov; 173(21):6807-10. PubMed ID: 1938887.
    Abstract:
    Uracil-DNA-glycosylase has been proposed to function as the first enzyme in strand-directed mismatch repair in eukaryotic organisms, through removal of uracil from dUMP residues periodically inserted into the DNA during DNA replication (Aprelikova, O. N., V. M. Golubovskaya, T. A. Kusmin, and N. V. Tomilin, Mutat. Res. 213:135-140, 1989). This hypothesis was investigated with Saccharomyces cerevisiae. Mutation frequencies and spectra were determined for an ung1 deletion strain in the target SUP4-o tRNA gene by using a forward selection scheme. Mutation frequencies in the SUP4-o gene increased about 20-fold relative to an isogenic wild-type S. cerevisiae strain, and the mutator effect was completely suppressed in the ung1 deletion strain carrying the wild-type UNG1 gene on a multicopy plasmid. Sixty-nine independently derived mutations in the SUP4-o gene were sequenced. All but five of these were due to GC----AT transitions. From this analysis, we conclude that the mutator phenotype of the ung1 deletion strain is the result of a failure to repair spontaneous cytosine deamination events occurring frequently in S. cerevisiae and that the UNG1 gene is not required for strand-specific mismatch repair in S. cerevisiae.
    [Abstract] [Full Text] [Related] [New Search]