These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer. Author: Li FR, Yan WH, Guo YH, Qi H, Zhou HX. Journal: Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033. Abstract: BACKGROUND: Magnetic fluid hyperthermia is a kind of technology for treating tumors based on nanotechnology. It is suitable to various types of tumors. The purpose of this study was to prepare carboplatin-Fe@C-loaded chitosan nanoparticles with Fe@C as a magnetic core and to investigate efficacy of hyperthermia combined with chemotherapy for transplanted liver cancer in rats. METHODS: Fe@C nanopowder was treated with dilute hydrochloric acid to prepare Fe@C nanocage. Carboplatin-Fe@C-loaded chitosan nanoparticles were prepared by reverse microemulsion method with the nanocages as the magnetic cores, chitosan as the matrix. The shape, size, drug-loading rate, and in vitro cumulative release of the nanoparticles were observed and heat product under high frequency alternating electromagnetic field in vitro was explored. Eighty rats with transplanted liver cancer were randomly divided into 4 groups (group A: control group, group B: free carboplatin group, group C: nanoparticles with static magnetic field group, and group D: nanoparticles with static field and alternating magnetic field). Drug was injected into the hepatic artery. The therapeutic effect of hyperthermia combined with chemotherapy for tumor, toxicity and rat survival time were observed. RESULTS: Carboplatin-Fe@C-loaded chitosan nanoparticles were spherical in shape with an average size of (207 +/- 21) nm and high saturation magnetization. The drug-loading rate of the nanoparticles was 11.0 +/- 1.1%. The cumulative release percentage of carboplatin-Fe@C-loaded chitosan nanoparticles in vitro at different point time phase of 24 h, 48 h, 72 h, 96 h and 120 h were 51%, 68%, 80%, 87% and 91%, respectively. With an increase in carboplatin-Fe@C-loaded chitosan nanoparticle concentration and magnetic field strength, the heating rate and constant temperature of carboplatin-Fe@C-loaded chitosan nanoparticles dispersed in physiological saline were increased in an alternating magnetic field. In vivo experiments showed that after particle injection, tumor temperature reached 42.6 degrees +/- 0.2 degrees C within 10 min in the alternating magnetic field; and the temperatures in the right hepatic lobes and the rectum were significantly lower than in the tumor and the constant temperature could last up to 30 min. The inhibition ratio of tumor weight in group D was significantly enhanced, no obviously toxic and side-effect occurred and survival time was prolonged. CONCLUSION: Carboplatin-Fe@C-loaded chitosan nanoparticles possess good magnetic targeting and heat production properties. They can target liver cancer tissue by static magnetic field, and with the application of alternating magnetic field, effectively raise tumor tissue temperature and facilitate tumor apoptosis. The combination of chemotherapy and magnetic materials into nanoparticles as described herein demonstrates promising efficacy.[Abstract] [Full Text] [Related] [New Search]