These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: An amphioxus TLR with dynamic embryonic expression pattern responses to pathogens and activates NF-kappaB pathway via MyD88. Author: Yuan S, Huang S, Zhang W, Wu T, Dong M, Yu Y, Liu T, Wu K, Liu H, Yang M, Zhang H, Xu A. Journal: Mol Immunol; 2009 Jul; 46(11-12):2348-56. PubMed ID: 19394698. Abstract: A big bang expansion of the Vertebrate-type (V-type) TLRs was reported in amphioxus. To shed lights on its implications, a unique TLR which is reversely inserted into an intron of amphioxus PSMB7-10 by retrotransposition in the highly polymorphic proto-MHC region was cloned from Chinese amphioxus (Branchiostoma belcheri tsingtauense) and named as bbtTLR1. In situ assays showed that bbtTLR1 was predominantly expressed in pharynx and gut from larva to adult stages, which are considered as the first frontlines of amphioxus defense system. Acute immune challenges revealed that the expression of bbtTLR1 was stimulated by bacteria and their cell wall components, while suppressed by Glucan and Poly I:C in the digestive system. Amphioxus also had dozens of TIR adaptors from which we cloned bbtMyD88. BbtMyD88 expressed in 293T cells led to the activation of NF-kappaB pathway through its DEATH and middle domains. Moreover, this activation could be enhanced by bbtTLR1 through the direct association with bbtMyD88. In summary, this study provides evidence for the immune-relation of amphioxus V-type TLRs, and suggests that amphioxus TLR1 and MyD88 represent a basic evolutionary pathway.[Abstract] [Full Text] [Related] [New Search]