These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Guanosine 3',5'-cyclic monophosphate and the in vitro physiology of frog photoreceptor membranes.
    Author: Woodruff ML, Bownds D, Green SH, Morrisey JL, Shedlovsky A.
    Journal: J Gen Physiol; 1977 May; 69(5):667-79. PubMed ID: 194013.
    Abstract:
    Frog rod outer segments freshly detached from dark-adapted retinas contain approximately 1-2 molecules of guanosine 3',5'-cyclic monophosphate (cyclic GMP) for every 100 molecules of visual pigment present. This cyclic GMP decays to 5'-GMP, and the conversion is accelerated upon illumination of the outer segments. Bleaching one rhodopsin molecule can lead to the hydrolysis of 1,000-2,000 molecules of cyclic GMP within 100-300 ms. The decline in cyclic GMP concentration becomes larger as illumination increases, and varies with the logarithm of light intensity at levels which bleach between 5 X 10(2) and 5 X 10(5) rhodopsin molecules per outer segment-second. Light suppression of plasma membrane permeability, assayed in vitro as light suppression of outer segment swelling in a modified Ringer's solution, occurs over this same range of light intensity. The correlation between cyclic GMP and permeability or swelling is maintained in the presence of two pharmacological perturbations: papaverine, a phosphodiesterase inhibitor, increases both cyclic GMP levels and the dark permeability of the plasma membrane; and beta,gamma-methylene ATP increases the effectiveness of light in suppressing both permeability and cyclic GMP levels.
    [Abstract] [Full Text] [Related] [New Search]